
PHYS4450 Solid State Physics

SAMPLE QUESTION FOR DISCUSSION in Week 5 EXERCISE CLASS on 20 February
2013
You may want to think about them before attending exercise class.

SQ7 For Chapter VI on lattice vibrations, the most important point is to know how many branches and
the types of dispersion relations to be expected given a system.

TA: Let’s consider graphene. If we only allow the carbon atoms to move up and down the plane,
what does one expect for the dispersion relations and why? Next, if the carbon atoms are allowed to
vibrate both within the graphene plane and off (up and down) the plane, what does one expect for
the dispersion relations and why? Then search literature on possible dispersion relations from detailed
calculations and/or measurements.

SQ8 (Related to the idea of phonons (Chapters VI and VII).) Read me. Introduction – We are discussing
lattice vibrations in solids. In particular, we want to find the dispersion relation ω(q), which gives how
the normal mode (angular) frequencies ω depends on the wavevector q (with q ∈ 1st B.Z).

From classical mechanics, the normal modes are independent of each other. That is to say, we have
many independent oscillators (if we make the harmonic approximation). Each normal mode corre-
sponds to an independent oscillator.

The idea of phonons – If we impose quantum mechanics on every independent oscillator, we will get
the possible energies of (nq +

1
2 )h̄ω(q), where the quantum number nq (with q labelling the particular

normal mode and thus the particular independent oscillator under consideration) indicates the extent
the oscillator is excited. One can show that the excitations behave like particles with energy h̄ω(q)
and a quantity that looks like a momentum h̄q.

Let’s consider a particular normal mode. The state of no excitations corresponds to nq = 0. The state
of nq = 1 corresponds to a state with one phonon that has the energy h̄ω(q) and momentum h̄q.
The state of nq ̸= 0 corresponds to a state with nq phonons each of which has the energy h̄ω(q) and
momentum h̄q. Recall that in Statistical Mechanics, we know how to calculate the thermal average
⟨nq⟩ for a given temperature, and thus the averaged number of phonons of a normal mode excited
at a temperature. This leads us to a different viewpoint on the system. In this new picture, we can
simply forget the real stuffs that are oscillating (a huge number of atoms with chemical bonds among
them). We simply focus on the excitations. No excitation (ground state or nq = 0) can be taken
as the vacuum state. See that such a vacuum is not “nothing”, it has something, e.g., the zero
point energy. Excited states are taken as the creation of a few phonons. This is the beginning of
quantum field theory, which is a quantum theory that allows particles to be created and destroyed. If
we turn the discrete coupled-atoms problem into a continuum problem, we will get a wave equation
for the long wavelength oscillation (continuum means that the lattice spacing is always smaller than
the wavelength). There are again normal modes. If we impose quantum mechanics on them, we
see that a vacuum is just a state with no excitations. Excitations can be viewed as creating some
particles. Therefore, we have a new viewpoint on what are particles (thus what is matter). Particles
are excitations of a field. [Now, we get a sense on the Higgs’ particle being an excitation of the Higgs
field.]

TA: Start with a Lagrangian that will give the Hamiltonian as given in Appendix A to Chapter VI (see
attached pages). Use the Lagrangian to identify the conjugate momentum. This is classical mechanics.
To go from classical mechanics to quantum mechanics (“quantizing the harmonic oscillator”), the
commutator is imposed on a conjugate pair of coordinate and momentum. Appendix A gives a
summary of the key relationships in the quantum mechanics of a harmonic oscillator using the technique
of introducing the creation operator â and annihilation operator â†. This is an algebraic approach to
the SHO problem in QM. TA will fill in the details. In your quantum physics course, the standard
approach uses the differential equation form of the Schrödinger equation that amounts of a particular
(position) representation of the position operator X̂ (or x̂) and momentum operator P̂ (or p̂). A further
remark is that a similar approach is also convenient in treating angular momenta (orbital, spin, total
angular momenta) in QM.
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